Root biomass and soil carbon response to growing perennial grasses for bioenergy
نویسندگان
چکیده
Background: Dedicated bioenergy crops such as switchgrass (Panicum virgatum L.), miscanthus [Miscanthus x giganteus (Mxg)], indiangrass [Sorghastrum nutans (L.) Nash], and big bluestem (Andropogon gerardii Vitman) can provide cellulosic feedstock for biofuel production while maintaining or improving soil and environmental quality. To better understand bioenergy crop effects on soils, we studied changes in soil properties of a Tomek silt loam under inorganic fertilization of switchgrass after 4 years and warm-season grass monocultures and mixtures after 6 years in eastern Nebraska. Methods: The first experiment had two study factors: two switchgrass harvest dates (August and November) and nitrogen (N), phosphorus (P), and potassium (K) fertilization rates. Nitrogen fertilizer levels (0, 60, and 120 kg N ha) were the main plots, while P levels (0, 22, and 44 kg P ha) were the split plots and K levels (0, 11, and 22 kg K ha) were the split-split plots. The second experiment included six bioenergy feedstocks comprised of four monocultures [switchgrass (cv. Shawnee and an experimental strain tracked as Kanlow N1), indiangrass (Chief), and miscanthus (Mxg)] and two mixtures [big bluestem (Goldmine) + indiangrass (Warrior) + switchgrass (Shawnee) and big bluestem (Bonanza) + indiangrass (Scout) + switchgrass (Shawnee)]. Soil samples were analyzed for root biomass, soil organic C (SOC), total N, bulk density, aggregate stability, and pH. Results: In the first experiment, inorganic fertilization and harvest dates had no effect on switchgrass root biomass, SOC pools, soil aggregate stability, and other properties. In the second experiment, cumulative root biomass under Chief indiangrass monoculture was lower than that under other grass monocultures and mixtures except miscanthus. These results suggest that inorganic fertilization and harvest dates do not affect soil properties in the short term, but Chief indiangrass monoculture may have lower root biomass than other grasses. Conclusions: Overall, fertilization management did not induce changes in root biomass and soil properties, but Chief indiangrass monoculture had lower cumulative root biomass compared with mixtures and switchgrass monocultures, suggesting that cultivar selection will affect root biomass accumulation. Further monitoring is needed to determine long-term changes in root biomass and soil properties under these bioenergy crop systems.
منابع مشابه
Comparing Soil Organic Carbon Dynamics in Perennial Grasses and Shrubs in a Saline-Alkaline Arid Region, Northwestern China
BACKGROUND Although semi-arid and arid regions account for about 40% of terrestrial surface of the Earth and contain approximately 10% of the global soil organic carbon stock, our understanding of soil organic carbon dynamics in these regions is limited. METHODOLOGY/PRINCIPAL FINDINGS A field experiment was conducted to compare soil organic carbon dynamics between a perennial grass community ...
متن کاملand transformation of high-biomass yielding perennial grass Arundo donax
In recent years there has been significant interest in harvesting renewable fuels and value-added chemicals from plant feedstocks, especially from perennial grasses such as Arundo donax L. [1, 2, 3]. Some reasons why perennial grasses are desirable as next-generation bioenergy feedstock are: (i) their low soil management requirements and growth on marginal land; (ii) their ability to prevent so...
متن کاملMechanisms of soil carbon accrual and storage in bioenergy cropping systems
Annual row cropping systems converted to perennial bioenergy crops tend to accrue soil C, likely a function of increased root production and decreased frequency of tillage; however, very little is known about the mechanisms governing the accrual and stability of this additional soil C. To address this uncertainty, we assessed the formation and stability of aggregates and soil organic C (SOC) po...
متن کاملField-Based Estimates of Global Warming Potential in Bioenergy Systems of Hawaii: Crop Choice and Deficit Irrigation
Replacing fossil fuel with biofuel is environmentally viable from a climate change perspective only if the net greenhouse gas (GHG) footprint of the system is reduced. The effects of replacing annual arable crops with perennial bioenergy feedstocks on net GHG production and soil carbon (C) stock are critical to the system-level balance. Here, we compared GHG flux, crop yield, root biomass, and ...
متن کاملBioenergy cropping systems that incorporate native grasses stimulate growth of plant-associated soil microbes in the absence of nitrogen fertilization
The choice of crops and their management can strongly influence soil microbial communities and their processes. We used lipid biomarker profiling to characterize how soil microbial composition of five potential bioenergy cropping systems diverged from a common baseline five years after they were established. The cropping systems we studied included an annual system (continuous no-till corn) and...
متن کامل